extension | φ:Q→Aut N | d | ρ | Label | ID |
C62⋊1D6 = C62⋊D6 | φ: D6/C1 → D6 ⊆ Aut C62 | 36 | 12+ | C6^2:1D6 | 432,323 |
C62⋊2D6 = C62⋊2D6 | φ: D6/C1 → D6 ⊆ Aut C62 | 36 | 6 | C6^2:2D6 | 432,324 |
C62⋊3D6 = D4×C32⋊C6 | φ: D6/C1 → D6 ⊆ Aut C62 | 36 | 12+ | C6^2:3D6 | 432,360 |
C62⋊4D6 = D4×He3⋊C2 | φ: D6/C1 → D6 ⊆ Aut C62 | 36 | 6 | C6^2:4D6 | 432,390 |
C62⋊5D6 = C62⋊5D6 | φ: D6/C1 → D6 ⊆ Aut C62 | 18 | 6+ | C6^2:5D6 | 432,523 |
C62⋊6D6 = C22×C32⋊D6 | φ: D6/C1 → D6 ⊆ Aut C62 | 36 | | C6^2:6D6 | 432,545 |
C62⋊7D6 = C3×S3×S4 | φ: D6/C1 → D6 ⊆ Aut C62 | 24 | 6 | C6^2:7D6 | 432,745 |
C62⋊8D6 = C3⋊S3×S4 | φ: D6/C1 → D6 ⊆ Aut C62 | 36 | | C6^2:8D6 | 432,746 |
C62⋊9D6 = S3×C3⋊S4 | φ: D6/C1 → D6 ⊆ Aut C62 | 24 | 12+ | C6^2:9D6 | 432,747 |
C62⋊10D6 = C62⋊10D6 | φ: D6/C1 → D6 ⊆ Aut C62 | 24 | 12+ | C6^2:10D6 | 432,748 |
C62⋊11D6 = C3×C6×S4 | φ: D6/C2 → S3 ⊆ Aut C62 | 54 | | C6^2:11D6 | 432,760 |
C62⋊12D6 = C2×He3⋊6D4 | φ: D6/C2 → S3 ⊆ Aut C62 | 72 | | C6^2:12D6 | 432,377 |
C62⋊13D6 = C2×He3⋊7D4 | φ: D6/C2 → S3 ⊆ Aut C62 | 72 | | C6^2:13D6 | 432,399 |
C62⋊14D6 = C2×C62⋊S3 | φ: D6/C2 → S3 ⊆ Aut C62 | 18 | 6+ | C6^2:14D6 | 432,535 |
C62⋊15D6 = C2×C32⋊S4 | φ: D6/C2 → S3 ⊆ Aut C62 | 18 | 3 | C6^2:15D6 | 432,538 |
C62⋊16D6 = C23×C32⋊C6 | φ: D6/C2 → S3 ⊆ Aut C62 | 72 | | C6^2:16D6 | 432,558 |
C62⋊17D6 = C23×He3⋊C2 | φ: D6/C2 → S3 ⊆ Aut C62 | 72 | | C6^2:17D6 | 432,561 |
C62⋊18D6 = C6×C3⋊S4 | φ: D6/C2 → S3 ⊆ Aut C62 | 36 | 6 | C6^2:18D6 | 432,761 |
C62⋊19D6 = C2×C32⋊4S4 | φ: D6/C2 → S3 ⊆ Aut C62 | 54 | | C6^2:19D6 | 432,762 |
C62⋊20D6 = C3×Dic3⋊D6 | φ: D6/C3 → C22 ⊆ Aut C62 | 24 | 4 | C6^2:20D6 | 432,659 |
C62⋊21D6 = S3×C32⋊7D4 | φ: D6/C3 → C22 ⊆ Aut C62 | 72 | | C6^2:21D6 | 432,684 |
C62⋊22D6 = C3⋊S3×C3⋊D4 | φ: D6/C3 → C22 ⊆ Aut C62 | 72 | | C6^2:22D6 | 432,685 |
C62⋊23D6 = C62⋊23D6 | φ: D6/C3 → C22 ⊆ Aut C62 | 36 | | C6^2:23D6 | 432,686 |
C62⋊24D6 = C62⋊24D6 | φ: D6/C3 → C22 ⊆ Aut C62 | 24 | 4 | C6^2:24D6 | 432,696 |
C62⋊25D6 = C3×D4×C3⋊S3 | φ: D6/C3 → C22 ⊆ Aut C62 | 72 | | C6^2:25D6 | 432,714 |
C62⋊26D6 = D4×C33⋊C2 | φ: D6/C3 → C22 ⊆ Aut C62 | 108 | | C6^2:26D6 | 432,724 |
C62⋊27D6 = C22×C32⋊4D6 | φ: D6/C3 → C22 ⊆ Aut C62 | 48 | | C6^2:27D6 | 432,769 |
C62⋊28D6 = S3×D4×C32 | φ: D6/S3 → C2 ⊆ Aut C62 | 72 | | C6^2:28D6 | 432,704 |
C62⋊29D6 = C3×S3×C3⋊D4 | φ: D6/S3 → C2 ⊆ Aut C62 | 24 | 4 | C6^2:29D6 | 432,658 |
C62⋊30D6 = S32×C2×C6 | φ: D6/S3 → C2 ⊆ Aut C62 | 48 | | C6^2:30D6 | 432,767 |
C62⋊31D6 = C22×S3×C3⋊S3 | φ: D6/S3 → C2 ⊆ Aut C62 | 72 | | C6^2:31D6 | 432,768 |
C62⋊32D6 = C3×C6×C3⋊D4 | φ: D6/C6 → C2 ⊆ Aut C62 | 72 | | C6^2:32D6 | 432,709 |
C62⋊33D6 = C6×C32⋊7D4 | φ: D6/C6 → C2 ⊆ Aut C62 | 72 | | C6^2:33D6 | 432,719 |
C62⋊34D6 = C2×C33⋊15D4 | φ: D6/C6 → C2 ⊆ Aut C62 | 216 | | C6^2:34D6 | 432,729 |
C62⋊35D6 = C3⋊S3×C22×C6 | φ: D6/C6 → C2 ⊆ Aut C62 | 144 | | C6^2:35D6 | 432,773 |
C62⋊36D6 = C23×C33⋊C2 | φ: D6/C6 → C2 ⊆ Aut C62 | 216 | | C6^2:36D6 | 432,774 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
C62.1D6 = He3⋊C42 | φ: D6/C1 → D6 ⊆ Aut C62 | 144 | | C6^2.1D6 | 432,94 |
C62.2D6 = C62.D6 | φ: D6/C1 → D6 ⊆ Aut C62 | 144 | | C6^2.2D6 | 432,95 |
C62.3D6 = C62.3D6 | φ: D6/C1 → D6 ⊆ Aut C62 | 144 | | C6^2.3D6 | 432,96 |
C62.4D6 = C62.4D6 | φ: D6/C1 → D6 ⊆ Aut C62 | 72 | | C6^2.4D6 | 432,97 |
C62.5D6 = C62.5D6 | φ: D6/C1 → D6 ⊆ Aut C62 | 72 | | C6^2.5D6 | 432,98 |
C62.6D6 = C2×He3⋊2Q8 | φ: D6/C1 → D6 ⊆ Aut C62 | 144 | | C6^2.6D6 | 432,316 |
C62.7D6 = C2×C6.S32 | φ: D6/C1 → D6 ⊆ Aut C62 | 72 | | C6^2.7D6 | 432,317 |
C62.8D6 = C62.8D6 | φ: D6/C1 → D6 ⊆ Aut C62 | 72 | 12- | C6^2.8D6 | 432,318 |
C62.9D6 = C62.9D6 | φ: D6/C1 → D6 ⊆ Aut C62 | 72 | 6 | C6^2.9D6 | 432,319 |
C62.10D6 = C2×He3⋊2D4 | φ: D6/C1 → D6 ⊆ Aut C62 | 72 | | C6^2.10D6 | 432,320 |
C62.11D6 = C2×He3⋊(C2×C4) | φ: D6/C1 → D6 ⊆ Aut C62 | 72 | | C6^2.11D6 | 432,321 |
C62.12D6 = C2×He3⋊3D4 | φ: D6/C1 → D6 ⊆ Aut C62 | 72 | | C6^2.12D6 | 432,322 |
C62.13D6 = C62.13D6 | φ: D6/C1 → D6 ⊆ Aut C62 | 72 | 12- | C6^2.13D6 | 432,361 |
C62.14D6 = D4×C9⋊C6 | φ: D6/C1 → D6 ⊆ Aut C62 | 36 | 12+ | C6^2.14D6 | 432,362 |
C62.15D6 = Dic18⋊2C6 | φ: D6/C1 → D6 ⊆ Aut C62 | 72 | 12- | C6^2.15D6 | 432,363 |
C62.16D6 = C62.16D6 | φ: D6/C1 → D6 ⊆ Aut C62 | 72 | 6 | C6^2.16D6 | 432,391 |
C62.17D6 = S3×C3.S4 | φ: D6/C1 → D6 ⊆ Aut C62 | 36 | 12+ | C6^2.17D6 | 432,522 |
C62.18D6 = C4×C32⋊C12 | φ: D6/C2 → S3 ⊆ Aut C62 | 144 | | C6^2.18D6 | 432,138 |
C62.19D6 = C62.19D6 | φ: D6/C2 → S3 ⊆ Aut C62 | 144 | | C6^2.19D6 | 432,139 |
C62.20D6 = C62.20D6 | φ: D6/C2 → S3 ⊆ Aut C62 | 144 | | C6^2.20D6 | 432,140 |
C62.21D6 = C62.21D6 | φ: D6/C2 → S3 ⊆ Aut C62 | 72 | | C6^2.21D6 | 432,141 |
C62.22D6 = C4×C9⋊C12 | φ: D6/C2 → S3 ⊆ Aut C62 | 144 | | C6^2.22D6 | 432,144 |
C62.23D6 = Dic9⋊C12 | φ: D6/C2 → S3 ⊆ Aut C62 | 144 | | C6^2.23D6 | 432,145 |
C62.24D6 = C36⋊C12 | φ: D6/C2 → S3 ⊆ Aut C62 | 144 | | C6^2.24D6 | 432,146 |
C62.25D6 = D18⋊C12 | φ: D6/C2 → S3 ⊆ Aut C62 | 72 | | C6^2.25D6 | 432,147 |
C62.26D6 = C62⋊3C12 | φ: D6/C2 → S3 ⊆ Aut C62 | 72 | | C6^2.26D6 | 432,166 |
C62.27D6 = C62.27D6 | φ: D6/C2 → S3 ⊆ Aut C62 | 72 | | C6^2.27D6 | 432,167 |
C62.28D6 = C4×He3⋊3C4 | φ: D6/C2 → S3 ⊆ Aut C62 | 144 | | C6^2.28D6 | 432,186 |
C62.29D6 = C62.29D6 | φ: D6/C2 → S3 ⊆ Aut C62 | 144 | | C6^2.29D6 | 432,187 |
C62.30D6 = C62.30D6 | φ: D6/C2 → S3 ⊆ Aut C62 | 144 | | C6^2.30D6 | 432,188 |
C62.31D6 = C62.31D6 | φ: D6/C2 → S3 ⊆ Aut C62 | 72 | | C6^2.31D6 | 432,189 |
C62.32D6 = C62⋊4Dic3 | φ: D6/C2 → S3 ⊆ Aut C62 | 72 | | C6^2.32D6 | 432,199 |
C62.33D6 = C2×He3⋊3Q8 | φ: D6/C2 → S3 ⊆ Aut C62 | 144 | | C6^2.33D6 | 432,348 |
C62.34D6 = C2×C4×C32⋊C6 | φ: D6/C2 → S3 ⊆ Aut C62 | 72 | | C6^2.34D6 | 432,349 |
C62.35D6 = C2×He3⋊4D4 | φ: D6/C2 → S3 ⊆ Aut C62 | 72 | | C6^2.35D6 | 432,350 |
C62.36D6 = C62.36D6 | φ: D6/C2 → S3 ⊆ Aut C62 | 72 | 6 | C6^2.36D6 | 432,351 |
C62.37D6 = C2×C36.C6 | φ: D6/C2 → S3 ⊆ Aut C62 | 144 | | C6^2.37D6 | 432,352 |
C62.38D6 = C2×C4×C9⋊C6 | φ: D6/C2 → S3 ⊆ Aut C62 | 72 | | C6^2.38D6 | 432,353 |
C62.39D6 = C2×D36⋊C3 | φ: D6/C2 → S3 ⊆ Aut C62 | 72 | | C6^2.39D6 | 432,354 |
C62.40D6 = D36⋊6C6 | φ: D6/C2 → S3 ⊆ Aut C62 | 72 | 6 | C6^2.40D6 | 432,355 |
C62.41D6 = C22×C32⋊C12 | φ: D6/C2 → S3 ⊆ Aut C62 | 144 | | C6^2.41D6 | 432,376 |
C62.42D6 = C22×C9⋊C12 | φ: D6/C2 → S3 ⊆ Aut C62 | 144 | | C6^2.42D6 | 432,378 |
C62.43D6 = C2×Dic9⋊C6 | φ: D6/C2 → S3 ⊆ Aut C62 | 72 | | C6^2.43D6 | 432,379 |
C62.44D6 = C2×He3⋊4Q8 | φ: D6/C2 → S3 ⊆ Aut C62 | 144 | | C6^2.44D6 | 432,384 |
C62.45D6 = C2×C4×He3⋊C2 | φ: D6/C2 → S3 ⊆ Aut C62 | 72 | | C6^2.45D6 | 432,385 |
C62.46D6 = C2×He3⋊5D4 | φ: D6/C2 → S3 ⊆ Aut C62 | 72 | | C6^2.46D6 | 432,386 |
C62.47D6 = C62.47D6 | φ: D6/C2 → S3 ⊆ Aut C62 | 72 | 6 | C6^2.47D6 | 432,387 |
C62.48D6 = C22×He3⋊3C4 | φ: D6/C2 → S3 ⊆ Aut C62 | 144 | | C6^2.48D6 | 432,398 |
C62.49D6 = C2×C32.S4 | φ: D6/C2 → S3 ⊆ Aut C62 | 18 | 6+ | C6^2.49D6 | 432,533 |
C62.50D6 = C6×C3.S4 | φ: D6/C2 → S3 ⊆ Aut C62 | 36 | 6 | C6^2.50D6 | 432,534 |
C62.51D6 = C2×C32.3S4 | φ: D6/C2 → S3 ⊆ Aut C62 | 54 | | C6^2.51D6 | 432,537 |
C62.52D6 = C23×C9⋊C6 | φ: D6/C2 → S3 ⊆ Aut C62 | 72 | | C6^2.52D6 | 432,559 |
C62.53D6 = Dic3×Dic9 | φ: D6/C3 → C22 ⊆ Aut C62 | 144 | | C6^2.53D6 | 432,87 |
C62.54D6 = Dic9⋊Dic3 | φ: D6/C3 → C22 ⊆ Aut C62 | 144 | | C6^2.54D6 | 432,88 |
C62.55D6 = C18.Dic6 | φ: D6/C3 → C22 ⊆ Aut C62 | 144 | | C6^2.55D6 | 432,89 |
C62.56D6 = Dic3⋊Dic9 | φ: D6/C3 → C22 ⊆ Aut C62 | 144 | | C6^2.56D6 | 432,90 |
C62.57D6 = D18⋊Dic3 | φ: D6/C3 → C22 ⊆ Aut C62 | 144 | | C6^2.57D6 | 432,91 |
C62.58D6 = C6.18D36 | φ: D6/C3 → C22 ⊆ Aut C62 | 72 | | C6^2.58D6 | 432,92 |
C62.59D6 = D6⋊Dic9 | φ: D6/C3 → C22 ⊆ Aut C62 | 144 | | C6^2.59D6 | 432,93 |
C62.60D6 = C2×C9⋊Dic6 | φ: D6/C3 → C22 ⊆ Aut C62 | 144 | | C6^2.60D6 | 432,303 |
C62.61D6 = C2×Dic3×D9 | φ: D6/C3 → C22 ⊆ Aut C62 | 144 | | C6^2.61D6 | 432,304 |
C62.62D6 = D18.3D6 | φ: D6/C3 → C22 ⊆ Aut C62 | 72 | 4 | C6^2.62D6 | 432,305 |
C62.63D6 = C2×C18.D6 | φ: D6/C3 → C22 ⊆ Aut C62 | 72 | | C6^2.63D6 | 432,306 |
C62.64D6 = C2×C3⋊D36 | φ: D6/C3 → C22 ⊆ Aut C62 | 72 | | C6^2.64D6 | 432,307 |
C62.65D6 = C2×S3×Dic9 | φ: D6/C3 → C22 ⊆ Aut C62 | 144 | | C6^2.65D6 | 432,308 |
C62.66D6 = Dic3.D18 | φ: D6/C3 → C22 ⊆ Aut C62 | 72 | 4 | C6^2.66D6 | 432,309 |
C62.67D6 = D18.4D6 | φ: D6/C3 → C22 ⊆ Aut C62 | 72 | 4- | C6^2.67D6 | 432,310 |
C62.68D6 = C2×D6⋊D9 | φ: D6/C3 → C22 ⊆ Aut C62 | 144 | | C6^2.68D6 | 432,311 |
C62.69D6 = C2×C9⋊D12 | φ: D6/C3 → C22 ⊆ Aut C62 | 72 | | C6^2.69D6 | 432,312 |
C62.70D6 = S3×C9⋊D4 | φ: D6/C3 → C22 ⊆ Aut C62 | 72 | 4 | C6^2.70D6 | 432,313 |
C62.71D6 = D9×C3⋊D4 | φ: D6/C3 → C22 ⊆ Aut C62 | 72 | 4 | C6^2.71D6 | 432,314 |
C62.72D6 = D18⋊D6 | φ: D6/C3 → C22 ⊆ Aut C62 | 36 | 4+ | C6^2.72D6 | 432,315 |
C62.73D6 = C3×D4×D9 | φ: D6/C3 → C22 ⊆ Aut C62 | 72 | 4 | C6^2.73D6 | 432,356 |
C62.74D6 = C3×D4⋊2D9 | φ: D6/C3 → C22 ⊆ Aut C62 | 72 | 4 | C6^2.74D6 | 432,357 |
C62.75D6 = D4×C9⋊S3 | φ: D6/C3 → C22 ⊆ Aut C62 | 108 | | C6^2.75D6 | 432,388 |
C62.76D6 = C36.27D6 | φ: D6/C3 → C22 ⊆ Aut C62 | 216 | | C6^2.76D6 | 432,389 |
C62.77D6 = C62.77D6 | φ: D6/C3 → C22 ⊆ Aut C62 | 144 | | C6^2.77D6 | 432,449 |
C62.78D6 = C62.78D6 | φ: D6/C3 → C22 ⊆ Aut C62 | 144 | | C6^2.78D6 | 432,450 |
C62.79D6 = C62.79D6 | φ: D6/C3 → C22 ⊆ Aut C62 | 72 | | C6^2.79D6 | 432,451 |
C62.80D6 = C62.80D6 | φ: D6/C3 → C22 ⊆ Aut C62 | 144 | | C6^2.80D6 | 432,452 |
C62.81D6 = C62.81D6 | φ: D6/C3 → C22 ⊆ Aut C62 | 144 | | C6^2.81D6 | 432,453 |
C62.82D6 = C62.82D6 | φ: D6/C3 → C22 ⊆ Aut C62 | 144 | | C6^2.82D6 | 432,454 |
C62.83D6 = C33⋊6C42 | φ: D6/C3 → C22 ⊆ Aut C62 | 48 | | C6^2.83D6 | 432,460 |
C62.84D6 = C62.84D6 | φ: D6/C3 → C22 ⊆ Aut C62 | 48 | | C6^2.84D6 | 432,461 |
C62.85D6 = C62.85D6 | φ: D6/C3 → C22 ⊆ Aut C62 | 48 | | C6^2.85D6 | 432,462 |
C62.86D6 = C22×S3×D9 | φ: D6/C3 → C22 ⊆ Aut C62 | 72 | | C6^2.86D6 | 432,544 |
C62.87D6 = C3×D6.3D6 | φ: D6/C3 → C22 ⊆ Aut C62 | 24 | 4 | C6^2.87D6 | 432,652 |
C62.88D6 = C3×D6.4D6 | φ: D6/C3 → C22 ⊆ Aut C62 | 24 | 4 | C6^2.88D6 | 432,653 |
C62.89D6 = C2×S3×C3⋊Dic3 | φ: D6/C3 → C22 ⊆ Aut C62 | 144 | | C6^2.89D6 | 432,674 |
C62.90D6 = C62.90D6 | φ: D6/C3 → C22 ⊆ Aut C62 | 72 | | C6^2.90D6 | 432,675 |
C62.91D6 = C62.91D6 | φ: D6/C3 → C22 ⊆ Aut C62 | 72 | | C6^2.91D6 | 432,676 |
C62.92D6 = C2×Dic3×C3⋊S3 | φ: D6/C3 → C22 ⊆ Aut C62 | 144 | | C6^2.92D6 | 432,677 |
C62.93D6 = C62.93D6 | φ: D6/C3 → C22 ⊆ Aut C62 | 72 | | C6^2.93D6 | 432,678 |
C62.94D6 = C2×C33⋊8(C2×C4) | φ: D6/C3 → C22 ⊆ Aut C62 | 72 | | C6^2.94D6 | 432,679 |
C62.95D6 = C2×C33⋊9(C2×C4) | φ: D6/C3 → C22 ⊆ Aut C62 | 48 | | C6^2.95D6 | 432,692 |
C62.96D6 = C62.96D6 | φ: D6/C3 → C22 ⊆ Aut C62 | 24 | 4 | C6^2.96D6 | 432,693 |
C62.97D6 = C2×C33⋊9D4 | φ: D6/C3 → C22 ⊆ Aut C62 | 48 | | C6^2.97D6 | 432,694 |
C62.98D6 = C2×C33⋊5Q8 | φ: D6/C3 → C22 ⊆ Aut C62 | 48 | | C6^2.98D6 | 432,695 |
C62.99D6 = C3×C12.D6 | φ: D6/C3 → C22 ⊆ Aut C62 | 72 | | C6^2.99D6 | 432,715 |
C62.100D6 = C62.100D6 | φ: D6/C3 → C22 ⊆ Aut C62 | 216 | | C6^2.100D6 | 432,725 |
C62.101D6 = C32×D4⋊2S3 | φ: D6/S3 → C2 ⊆ Aut C62 | 72 | | C6^2.101D6 | 432,705 |
C62.102D6 = C3×Dic32 | φ: D6/S3 → C2 ⊆ Aut C62 | 48 | | C6^2.102D6 | 432,425 |
C62.103D6 = C3×D6⋊Dic3 | φ: D6/S3 → C2 ⊆ Aut C62 | 48 | | C6^2.103D6 | 432,426 |
C62.104D6 = C3×C6.D12 | φ: D6/S3 → C2 ⊆ Aut C62 | 48 | | C6^2.104D6 | 432,427 |
C62.105D6 = C3×Dic3⋊Dic3 | φ: D6/S3 → C2 ⊆ Aut C62 | 48 | | C6^2.105D6 | 432,428 |
C62.106D6 = C3×C62.C22 | φ: D6/S3 → C2 ⊆ Aut C62 | 48 | | C6^2.106D6 | 432,429 |
C62.107D6 = Dic3×C3⋊Dic3 | φ: D6/S3 → C2 ⊆ Aut C62 | 144 | | C6^2.107D6 | 432,448 |
C62.108D6 = S3×C6×Dic3 | φ: D6/S3 → C2 ⊆ Aut C62 | 48 | | C6^2.108D6 | 432,651 |
C62.109D6 = C6×C6.D6 | φ: D6/S3 → C2 ⊆ Aut C62 | 48 | | C6^2.109D6 | 432,654 |
C62.110D6 = C6×D6⋊S3 | φ: D6/S3 → C2 ⊆ Aut C62 | 48 | | C6^2.110D6 | 432,655 |
C62.111D6 = C6×C3⋊D12 | φ: D6/S3 → C2 ⊆ Aut C62 | 48 | | C6^2.111D6 | 432,656 |
C62.112D6 = C6×C32⋊2Q8 | φ: D6/S3 → C2 ⊆ Aut C62 | 48 | | C6^2.112D6 | 432,657 |
C62.113D6 = C2×C33⋊6D4 | φ: D6/S3 → C2 ⊆ Aut C62 | 144 | | C6^2.113D6 | 432,680 |
C62.114D6 = C2×C33⋊7D4 | φ: D6/S3 → C2 ⊆ Aut C62 | 72 | | C6^2.114D6 | 432,681 |
C62.115D6 = C2×C33⋊8D4 | φ: D6/S3 → C2 ⊆ Aut C62 | 72 | | C6^2.115D6 | 432,682 |
C62.116D6 = C2×C33⋊4Q8 | φ: D6/S3 → C2 ⊆ Aut C62 | 144 | | C6^2.116D6 | 432,683 |
C62.117D6 = C32×C4○D12 | φ: D6/C6 → C2 ⊆ Aut C62 | 72 | | C6^2.117D6 | 432,703 |
C62.118D6 = C12×Dic9 | φ: D6/C6 → C2 ⊆ Aut C62 | 144 | | C6^2.118D6 | 432,128 |
C62.119D6 = C3×Dic9⋊C4 | φ: D6/C6 → C2 ⊆ Aut C62 | 144 | | C6^2.119D6 | 432,129 |
C62.120D6 = C3×C4⋊Dic9 | φ: D6/C6 → C2 ⊆ Aut C62 | 144 | | C6^2.120D6 | 432,130 |
C62.121D6 = C3×D18⋊C4 | φ: D6/C6 → C2 ⊆ Aut C62 | 144 | | C6^2.121D6 | 432,134 |
C62.122D6 = C3×C18.D4 | φ: D6/C6 → C2 ⊆ Aut C62 | 72 | | C6^2.122D6 | 432,164 |
C62.123D6 = C4×C9⋊Dic3 | φ: D6/C6 → C2 ⊆ Aut C62 | 432 | | C6^2.123D6 | 432,180 |
C62.124D6 = C6.Dic18 | φ: D6/C6 → C2 ⊆ Aut C62 | 432 | | C6^2.124D6 | 432,181 |
C62.125D6 = C36⋊Dic3 | φ: D6/C6 → C2 ⊆ Aut C62 | 432 | | C6^2.125D6 | 432,182 |
C62.126D6 = C6.11D36 | φ: D6/C6 → C2 ⊆ Aut C62 | 216 | | C6^2.126D6 | 432,183 |
C62.127D6 = C62.127D6 | φ: D6/C6 → C2 ⊆ Aut C62 | 216 | | C6^2.127D6 | 432,198 |
C62.128D6 = C6×Dic18 | φ: D6/C6 → C2 ⊆ Aut C62 | 144 | | C6^2.128D6 | 432,340 |
C62.129D6 = D9×C2×C12 | φ: D6/C6 → C2 ⊆ Aut C62 | 144 | | C6^2.129D6 | 432,342 |
C62.130D6 = C6×D36 | φ: D6/C6 → C2 ⊆ Aut C62 | 144 | | C6^2.130D6 | 432,343 |
C62.131D6 = C3×D36⋊5C2 | φ: D6/C6 → C2 ⊆ Aut C62 | 72 | 2 | C6^2.131D6 | 432,344 |
C62.132D6 = C2×C6×Dic9 | φ: D6/C6 → C2 ⊆ Aut C62 | 144 | | C6^2.132D6 | 432,372 |
C62.133D6 = C6×C9⋊D4 | φ: D6/C6 → C2 ⊆ Aut C62 | 72 | | C6^2.133D6 | 432,374 |
C62.134D6 = C2×C12.D9 | φ: D6/C6 → C2 ⊆ Aut C62 | 432 | | C6^2.134D6 | 432,380 |
C62.135D6 = C2×C4×C9⋊S3 | φ: D6/C6 → C2 ⊆ Aut C62 | 216 | | C6^2.135D6 | 432,381 |
C62.136D6 = C2×C36⋊S3 | φ: D6/C6 → C2 ⊆ Aut C62 | 216 | | C6^2.136D6 | 432,382 |
C62.137D6 = C36.70D6 | φ: D6/C6 → C2 ⊆ Aut C62 | 216 | | C6^2.137D6 | 432,383 |
C62.138D6 = C22×C9⋊Dic3 | φ: D6/C6 → C2 ⊆ Aut C62 | 432 | | C6^2.138D6 | 432,396 |
C62.139D6 = C2×C6.D18 | φ: D6/C6 → C2 ⊆ Aut C62 | 216 | | C6^2.139D6 | 432,397 |
C62.140D6 = C12×C3⋊Dic3 | φ: D6/C6 → C2 ⊆ Aut C62 | 144 | | C6^2.140D6 | 432,487 |
C62.141D6 = C3×C6.Dic6 | φ: D6/C6 → C2 ⊆ Aut C62 | 144 | | C6^2.141D6 | 432,488 |
C62.142D6 = C3×C12⋊Dic3 | φ: D6/C6 → C2 ⊆ Aut C62 | 144 | | C6^2.142D6 | 432,489 |
C62.143D6 = C3×C6.11D12 | φ: D6/C6 → C2 ⊆ Aut C62 | 144 | | C6^2.143D6 | 432,490 |
C62.144D6 = C3×C62⋊5C4 | φ: D6/C6 → C2 ⊆ Aut C62 | 72 | | C6^2.144D6 | 432,495 |
C62.145D6 = C4×C33⋊5C4 | φ: D6/C6 → C2 ⊆ Aut C62 | 432 | | C6^2.145D6 | 432,503 |
C62.146D6 = C62.146D6 | φ: D6/C6 → C2 ⊆ Aut C62 | 432 | | C6^2.146D6 | 432,504 |
C62.147D6 = C62.147D6 | φ: D6/C6 → C2 ⊆ Aut C62 | 432 | | C6^2.147D6 | 432,505 |
C62.148D6 = C62.148D6 | φ: D6/C6 → C2 ⊆ Aut C62 | 216 | | C6^2.148D6 | 432,506 |
C62.149D6 = C63.C2 | φ: D6/C6 → C2 ⊆ Aut C62 | 216 | | C6^2.149D6 | 432,511 |
C62.150D6 = D9×C22×C6 | φ: D6/C6 → C2 ⊆ Aut C62 | 144 | | C6^2.150D6 | 432,556 |
C62.151D6 = C23×C9⋊S3 | φ: D6/C6 → C2 ⊆ Aut C62 | 216 | | C6^2.151D6 | 432,560 |
C62.152D6 = C6×C32⋊4Q8 | φ: D6/C6 → C2 ⊆ Aut C62 | 144 | | C6^2.152D6 | 432,710 |
C62.153D6 = C3⋊S3×C2×C12 | φ: D6/C6 → C2 ⊆ Aut C62 | 144 | | C6^2.153D6 | 432,711 |
C62.154D6 = C6×C12⋊S3 | φ: D6/C6 → C2 ⊆ Aut C62 | 144 | | C6^2.154D6 | 432,712 |
C62.155D6 = C3×C12.59D6 | φ: D6/C6 → C2 ⊆ Aut C62 | 72 | | C6^2.155D6 | 432,713 |
C62.156D6 = C2×C6×C3⋊Dic3 | φ: D6/C6 → C2 ⊆ Aut C62 | 144 | | C6^2.156D6 | 432,718 |
C62.157D6 = C2×C33⋊8Q8 | φ: D6/C6 → C2 ⊆ Aut C62 | 432 | | C6^2.157D6 | 432,720 |
C62.158D6 = C2×C4×C33⋊C2 | φ: D6/C6 → C2 ⊆ Aut C62 | 216 | | C6^2.158D6 | 432,721 |
C62.159D6 = C2×C33⋊12D4 | φ: D6/C6 → C2 ⊆ Aut C62 | 216 | | C6^2.159D6 | 432,722 |
C62.160D6 = C62.160D6 | φ: D6/C6 → C2 ⊆ Aut C62 | 216 | | C6^2.160D6 | 432,723 |
C62.161D6 = C22×C33⋊5C4 | φ: D6/C6 → C2 ⊆ Aut C62 | 432 | | C6^2.161D6 | 432,728 |
C62.162D6 = Dic3×C3×C12 | central extension (φ=1) | 144 | | C6^2.162D6 | 432,471 |
C62.163D6 = C32×Dic3⋊C4 | central extension (φ=1) | 144 | | C6^2.163D6 | 432,472 |
C62.164D6 = C32×C4⋊Dic3 | central extension (φ=1) | 144 | | C6^2.164D6 | 432,473 |
C62.165D6 = C32×D6⋊C4 | central extension (φ=1) | 144 | | C6^2.165D6 | 432,474 |
C62.166D6 = C32×C6.D4 | central extension (φ=1) | 72 | | C6^2.166D6 | 432,479 |
C62.167D6 = C3×C6×Dic6 | central extension (φ=1) | 144 | | C6^2.167D6 | 432,700 |
C62.168D6 = S3×C6×C12 | central extension (φ=1) | 144 | | C6^2.168D6 | 432,701 |
C62.169D6 = C3×C6×D12 | central extension (φ=1) | 144 | | C6^2.169D6 | 432,702 |
C62.170D6 = Dic3×C62 | central extension (φ=1) | 144 | | C6^2.170D6 | 432,708 |